That the universe is expanding has been known for almost a hundred years now, but how fast? The exact rate of that expansion remains hotly debated, even challenging the standard model of cosmology. A research team at the Technical University of Munich (TUM), the Ludwig Maximilians University (LMU) and the Max Planck Institutes MPA and MPE has now imaged and modelled an exceptionally rare supernova that could provide a new, independent way to measure how fast the universe is expanding.
The supernova is a rare superluminous stellar explosion, 10 billion lightyears away, and far brighter than typical supernovae. It is also special in another way: the single supernova appears five times in the night sky, like cosmic fireworks, due to a phenomenon known as gravitational lensing.
Two foreground galaxies bend the supernova’s light as it travels toward Earth, forcing it to take different paths. Because these paths have slightly different lengths, the light arrives at different times. By measuring the time delays between the multiple copies of the supernova, researchers can determine the universe’s present-day expansion rate, known as the Hubble constant.
Sherry Suyu, Associate Professor of Observational Cosmology at TUM and Fellow at the Max Planck Institute for Astrophysics, explains: “We nicknamed this supernova SN Winny, inspired by its official designation SN 2025wny. It is an extremely rare event that could play a key role in improving our understanding of the cosmos. The chance of finding a superluminous supernova perfectly aligned with a suitable gravitational lens is lower than one in a million. We spent six years searching for such an event by compiling a list of promising gravitational lenses, and in August 2025, SN Winny matched exactly with one of them.”
